

Loyola/Notre Dame Library Expansion & Renovation

Baltimore, MD

Thesis Mechanical Breadth

Solar Shading Analysis

Final Thesis Report

Sandra DiRupo	Construction Management	Dr. Horman	Apr. 9, 2008
Mechanical Breadth			

Solar Shading Analysis

The newly constructed curtain wall façade for floors two and three was designed to have three layers of horizontal solar shades per floor attached at seems in the glass as seen below at the east entrance of the building:

In an effort to save energy, it is difficult to say if these aluminum sunshades are actually shading the interior gallery spaces (18,750 SF, excluding lower level) or if they merely exist as an architectural attraction around the perimeter of the addition.

Final Thesis Report

Sandra DiRupo	Construction Management	Dr. Horman	Apr. 9, 2008
---------------	-------------------------	------------	--------------

Mechanical Breadth

The objective of this analysis will be to configure a way to

- Find alternative ways to save energy and cost of energy per year
- Minimize solar heat gain energy to save on the cost of cooling each floor
- Allow for indirect light to enter space with the right balance of
 - o Solar shading
 - o Use of light shelves

First, solar angles were calculated to determine the corresponding shading lengths for each month of the year between the hours of 7 AM and 5:00 PM using a solar angle calculation website: http://www.susdesign.com/sunangle/

Sun Angle Calculations

[See Appendix D.1 for Solar Angle Calculations]

INPUTS					
Longitude	76°40″0′ West	Time	7:00 AM-5:00 PM		
Latitude	39°11″0′ North	Time Zone	R (GMT – 5:00)		
Date	Jan. 15th-Dec. 15th	Time Basis	Clock Time		
Year	2008	Daylight Savings	None		
Elevation	10 Meters	Zero Azimuth	South		

Outputs							
Altitude AngleSee Appendix D.4Declination11:50 AM							
Azimuth AngleSee Appendix D.4Equation of Time (EOT)-0.11							
Clock Time 11:50 AM Time of Sunrise *Varies							
Solar Time	Solar Time Declination-EOT Time of Sunset *Varies						
A	ngles calculated from http://v	www.susdesign.com/sunangle	e/				

Final Thesis Report

Sandra DiRupo	Construction Management	Dr. Horman	Apr. 9, 2008
-	-		-

Mechanical Breadth

1. The existing design provided solar shading on the building façade, but not in appropriate places. Aluminum sunshades on the existing building range from 1'-2 ¾" to 1'-0" in width, not allowing for much shading. In addition to this, the sunshades are also shading spandrel and fritted glass in some areas. This may be saving some energy, but this is certainly not allowing for solar shading for the building occupants. Below are comparison calculations that determined adequate solar shade lengths between the existing and the proposed design. See existing shade lengths and corresponding drawing (figure A) below:

Existing Southern Façade						
Overhead Length	(Ft)	1	1.23	3		
Shade Length (Ft)	Jan	0.57	0.70	1.70		
	Feb	0.78	0.96	2.33		
	Mar	1.15	1.41	3.44		
	Apr	1.79	2.21	5.38		
	Мау	2.73	3.36	8.18		
	Jun	3.51	4.31	10.52		
	Jul	3.08	3.78	9.23		
	Aug	2.09	2.58	6.28		
	Sep	1.35	1.66	4.06		
	Oct	0.90	1.11	2.70		
	Nov	0.63	0.77	1.88		
	Dec	0.52	0.64	1.56		
	Average	1.55	1.90	4.64		

Figure A: Existing Southern Facade

Final Thesis Report

Sandra DiRupo	Construction Management	Dr. Horman	Apr. 9, 2008

Mechanical Breadth

2. The proposed design replaces the existing sunshade with a longer and wider style shade manufactured by Kawneer. The new length will allow the shades to shade the same area of the window in the summer while reducing the amount of solar heat gain entering through the glass. Reducing the number of shades also eliminates redundant shading. Though these shades may be a bit more expensive, fewer are needed to make up for the upfront cost. In addition, over time, these shades will be saving energy for summer cooling equipment, so this makes the investment a justifiable one. The light shelf, opposite of the sunshade has also been lengthened in the re-design. This will be discussed in Section E (Lighting Breadth) of this report.

Shade Length (Ft) Jan 1.70 1.70 1.70 Feb 2.33	Proposed Southern Façade							
Feb 2.33 2.33 2.3 Mar 3.44 3.44 3.4 Apr 5.38 5.38 5.3 May 8.18 8.18 8.1 Jun 10.52 10.52 10 Jul 9.23 9.23 9.3 Aug 6.28 6.28 6.3	3							
Mar3.443.443.4Apr5.385.385.3May8.188.188.1Jun10.5210.5210Jul9.239.239.3Aug6.286.286.28	70							
Apr5.385.385.3May8.188.188.1Jun10.5210.5210Jul9.239.239.3Aug6.286.286.3	33							
May8.188.188.Jun10.5210.5210.Jul9.239.239.Aug6.286.286.	44							
Jun10.5210.5210.Jul9.239.239.Aug6.286.286.	38							
Jul 9.23 9.23 9.2 Aug 6.28 6.28 6.2	18							
Aug 6.28 6.28 6.1	52							
0	23							
Sen 406 406 4	28							
	06							
Oct 2.70 2.70 2.	70							
Nov 1.88 1.88 1.8	88							
Dec 1.56 1.56 1.	56							
Average 4.64 4.64 4.	64							

[The last column of three foot overhead length remains unchanged shading the first floor]

Figure B: Proposed Southern Facade

Final Thesis Report

Sandra DiRupo	Construction Management	Dr. Horm	nan A	pr. 9, 2008
Mechanical Breadth				
 Below are sola sunshade des 	ar heat gain calculations for the e ign.	existing sunsha	des vs. the pro	posed
	Existing Aluminur	n Sunshades		
Southern Façade Ar	rea = Length of Shade X Length of W =1.55 Ft X 112 Ft = 173.05 SF at 1'-0", 212.85 SF at		4 at 3'-0"	
=	Southern Façade Area X Num. of Sto (173.05 SF X 2 Stories) = 346.1 SF (at 1 (212.85 SF X 2 Stories) = 425.70 SF (at (519.14 SF X 1 Story) = 519.14 SF (at 3	′-0″) 1′2 ¾″)		
	= Length of wall X Height of Glass = 112 Ft X 10'-0" (clear glass) = 1,120 SF on 1 st Floor & 1,792 SF on 2	nd and 3 rd Floors	(7'0" High Glas	ss)
Area of Total Glass	= 2,912 SF			
= 346.0 = 425.7 = 519.1	Shade Area/Total Window Area 9 SF/2,912 SF = 11.9 % 0 SF/2,912 SF = 14.6% 4 SF/2,912 SF = 17.8% -Asx)Atx*Fx at 1'-0", 1'2 ¾", and 3'	Querhands		
•	ngth X # of Stories X Length of Wall/	0	Vin Area)X # of	Clear days)
Southern Facade Area	а	173.05	212.85	519.14
Total Shade Area		346.09	425.70	519.14
Total Window Area (Ex (All Floors Excluding Lo	cluding non-clear glass) ower Level)	2912		andrel & fritted lass
Shade Ratio		0.119	0.146	0.178
			Shade Ratio	44.33%
	= (1-Asx)Atx*Fx (See page 7 for Resu	lts)		
South @ 95F, Reg. Dou				
Asx	Area of Shade (Shade length'	1		1
Atx	Area of Total Glass (SF)	2912	2912	2912
Fx	Solar Heat Gain Factor	75	75	75
Fn	North Solar Heat Gain Factor	29	29	29

Final Thesis Report

Sandra DiRupo	Construction Management	Dr. Horman	Apr. 9, 2008
Mechanical Breadth	Proposed Aluminum Sun	shades	
Southern Façade A	rea = Length of Shade X Length of Wall =4.64 Ft X 112 Ft = 519.14 SF at 3'-0", 519.14 SF at 3'-0		
=	Southern Façade Area X Num. of Stories (519.4 SF X 1 Story) = 519.14 SF (at 3'-0") (519.14 SF X 1 Story) = 519.14 SF (at 3'-0") (519.14 SF X 1 Story) = 519.14 SF (at 3'-0")	')	
Total Window Area	= Length of wall X Height of Glass = 112 Ft X 10'-0" (clear glass) = 1,120 SF on 1 st Floor & 1,792 SF on 2 nd a	and 3 rd Floors (7'0" Hig	gh Glass)
Area of Total Glass	= 2,912 SF		
= 519.1 = 519.1	Shade Area/Total Window Area 4 SF/2,912 SF = 17.8 % 4 SF/2,912 SF = 17.8% 4 SF/2,912 SF = 17.8%		
-	I-Asx)Atx*Fx at 3'-0", 3'-0", and 3'-0" O ength X # of Stories X Length of Wall/Tot	U U)X # of Clear days)

Southern Facade Area (Length of Shade*Length of Wall)		519.14	519.14	519.14
Total Shade Area (Southern Façade Area*# of Stories)		519.14	519.14	519.14
Total Window Area (Excluding non-clear glass) (All Floors Excluding Lower Level)		2912	Excluding spandrel & fritted glass	
Shade Ratio		0.178	0.178	0.178
		Total	Shade Ratio	53.48%
Solar Heat GainX (Btu) = (1-Asx)Atx*Fx (See page 7 for Results)				
South @ 95F, Reg. Double Glass				
Asx	Area of Shade (Shade length*# c Area)	of stories*Leng	gth of Wall/Total	Window
Atx	Area of Total Glass (SF)			3024
Fx	Solar Heat Gain Factor			75
Fn	North Solar Heat Gain Factor			29

The existing building façade's shade ratio was 44.33%, but some of that shading was done over decorative glass, so that percent of shading may be reduced even further. A total of 9.15% of shading was added with the new three foot sunshade design.

Final Thesis Report

Canadaa DiDuma	Construction			1	A 0 20			
Sandra DiRupo	Constructio	n Managemen	t Dr. F	lorman	Apr. 9, 20			
Mechanical Bread	dth			<u>~</u>				
				5. 9 38 J				
	Ene	ergy Savings C	omparison					
	Solar Heat Gain	with Existing 9	Shades					
	Overhead Length	1	1.23	3				
	Jan.	1594748	1653442	1700321				
	Feb.	1538171	1618647	1682924				
	Mar.	1439394	1557899	1652550				
	Apr.	1265252	1450802	1599001				
	May	1013859	1296196	1521698				
	June	804819	1167636	1457418				
	July	1035461	1393564	1679582				
	Aug.	1332174	1576043	1770822				
	Sept.	1902732	2095104	2248752				
	Oct.	2258394	2397920	2509360				
	Nov.	1776052	1849028	1907314				
	Dec.	1607212	1661107	1704154				
	Total	35,136,537	19,717,389	21,433,898				
	Total Gain 76	,287,823.95	BTU					
	Solar Heat Gain	with Propose	d Shades					
	Overhead Length	3	3	3				
	Jan.	1632861	1632861	1632861				
	Feb.	1590428	1590428	1590428				
	Mar.	1516346	1516346	1516346				
	Apr.	1385739	1385739	1385739				
	Мау	1197195	1197195	1197195				
	June	1040414	1040414	1040414				
	July	1267996	1267996	1267996				
	Aug.	1490531	1490531	1490531				
	Sept.	2027649	2027649	2027649				
	Oct.	2348995	2348995	2348995				
	Nov.	1823439	1823439	1823439				
	Dec.	1642209	1642209	1642209				
	Total	18,963,801	18,963,801	18,963,801				

19,396,419.62 BTU's SAVED/YEAR

BTU

56,891,404.33

Total Gain

Final Thesis Report

Sandra DiRupoConstruction ManagementDr. HormanApr. 9, 2008				
	Sandra DiRupo	Construction Management	Dr. Horman	Apr. 9, 2008

Mechanical Breadth

4. Total cooling loads were also calculated in TRANE Trace software to verify if actual energy savings exist including other loads besides the natural sun alone. Two alternatives were compared.

- Alternative 1: Existing façade (with 3' overhang above the first floor and 1' and 1.23' wide solar shades along the second and third floor facades)
- Alternative 2: Proposed façade (with 3' overhang above first floor and 3' wide solar shades along the second and third floor facades
- Alternative 3: Incorporate an enthalpy wheel inside new air handling unit

Calculations to verify the total cooling capacity provided by James Posey Associates were performed in TRACE 700 by inputting the design criteria along with the necessary room dimensions for each floor (assuming each floor counts as one room since the floor plans are open gallery spaces which serve as study rooms).

Alternative 1: Existing Building Design Criteria (As calculated and provided by James Posey Associates)				
Interior	Summer - 75°F Winter - 70° F			
Exterior	Summer - 95° F Winter - 0° F			
Interior Load	Lighting – 1.5 Watts/SF Miscellaneous – 1.0 Watts/SF			
Ventilation Load	15 CFM of outside air per person			
People Density	50 SF per person			
Wall "U" coefficient	0.28 BTU/(Hr)(SF)(°F)			
Roof "U" coefficient	0.08 BTU/(HR)(SF)(°F)			
Glass transmission coefficient	0.76 BTU/(HR)(SF)(°F)			
Glass solar factor 0.75 BTU/(HR)(SF)(°F)				
Total Cooling Capacity (BY DESIGN)	1,356,000 btu/(HR)(SF)(°F) 113 Tons			

Final Thesis Report

Sandra DiRupo	Construction Management	Dr. Horman	Apr. 9, 2008
•	ç		•

Mechanical Breadth

In Alternative 2, the length of the solar shades was changed to three feet to eliminate some of the sun's energy in hopes to reduce the amount of cooling while still providing an adequately day lighted space. The existing space is already a rather luminous space by sun penetration alone. Hopefully the sunshade width change will not sacrifice daylight circulation through these spaces. Light shelves will remain in place (but longer in length) on the second and third floors to aid in indirect daylight distribution.

[All cooling coil peak results from TRACE analysis may be found in Appendix D.2-3]

After completing the second alternative, 21tons of total cooling energy was conserved for the first, second, and third floors of the addition. These results are acceptable. Since the existing sunshades were not supplying very much shade or energy savings, it is a safe re-design analysis to lengthen the shades by two to three feet. This will eliminate much of the distracting direct sunlight also. The original design also provides light shelves to do this on floors two and three. A longer, louvered sunshade will only enhance this idea while balancing the right amount of foot-candles and BTU's coming in and out. Choosing a sunshade with louvers may also be a consideration since they still filter in some direct daylight.

If more energy conservation is desired to reduce life cycle costs for cooling the addition space, another way to do this would be to utilize renewable resources by introducing an enthalpy wheel (Alternative 3). Enthalpy wheels are becoming more and more popular, especially because they are efficient with conserving energy in air-conditioned spaces.

- The wheel is positioned in a duct system such that it is divided into two half moon sections
- Stale air from the conditioned space is exhausted through one half while outdoor air is drawn through the other half in a counter flow pattern
- At the same time, the wheel is rotated slowly (2 to 20 RPM)
- Sensible heat is transferred as the metallic substrate picks up and stores heat from the hot air stream and gives it up to the cold one
- Latent heat is transferred as the medium condenses moisture from the air stream that has the higher humidity ratio

Final Thesis Report

Mechanical Breadth

The schematic below gives a better idea of how this will work in a VAV system on a typical Baltimore summer day.

Alternative 3 includes adjusted load distribution when using a 0.80 efficient enthalpy wheel. Energy savings is now even better combining the new solar shade design and incorporating an enthalpy wheel in the new variable air volume air handling unit. Here is the new and improved load distribution.

[All cooling coil peak results from TRACE analysis may be found in Appendix D.4]

After the third design alternative, it is now safe to say that over 30 tons of cooling energy will be saved by implementing an enthalpy wheel in conjunction with the solar shading re-design. Though this new alternative may be saving BTU's/Hr to cool the space, a first cost investment in an enthalpy wheel is not cheap. Justification for purchasing an enthalpy wheel would be the energy cost savings over the course of three to five years, which will in turn be paying for the first cost of an enthalpy wheel. Below are the cost comparisons for each of the alternatives based on the electricity cost of \$0.09/kWh. Energy loads were calculated from the solar shade and TRACE analyses.

Final Thesis Report

Sandra DiRupo	Ira DiRupo Construction Management Dr. Horman							
Mechanical Breadth								
Cost Savings From Solar Energy Alone								
Typical Calculation								
1 kWh=3413 BTU								
January: 1,644,676 BTU X 1 kWh/3413 BTU=481.89 kWh								
	-							
	ι	Jnit Cost of Electricity: \$0	.09/kWh					
	Ja	anuary: \$0.09 kWh X 481.3	89 kWh =					
		\$43.37 Savings						
	Energy Savings per Month							
	BTU \$/kWh							
	Jan	1644676	\$43.37					
	Feb	1606628	\$42.37					
	Mar	1540201	\$40.61					
	Apr	1423090	\$37.53					
	May	1254029	\$33.07					
	Jun	1113449	\$29.36					
-	Jul	1340081	\$35.34					
	Aug 1539621 \$40.60							
-	Sep 2066373 \$54.49							
	Oct 2377082 \$62.68							
	Nov	1838129	\$48.47					
	Dec	1653058	\$43.59					
	Total	19396417	<mark>\$511.48</mark>					

If the amount of energy saved from solar heat gain reduction could be calculated as a cost savings, then for an entire year \$511.48 would be saved. Every little bit counts.

Final Thesis Report

Sar	ndra DiRupo	Construction Management	Dr. Horman	Apr. 9, 2008				
Med	Mechanical Breadth Cost Savings from Cooling Energy							
		generation of the second s	<u> </u>					
		ALTERNATIVE 1						
	[Typical	Calculation using Data from TRAC	E analysis, Existing Sh	nades]				
	EXISTING Net Total (BTU/h): 1,272,908							
	[1,272,908 BTU/h] X [24 h/1 day] X [30 days/month] = 916,493,760 BTU/month							
	[EXPENDED BY COOLING ENERGY, May-Sept]							
	Total Energy	ı/year: 916,493,760 BTU/month X 5	months = 4,582,468,	,800 BTU's				
		1 kWh=3,413 BTU						
	4,	582,468,800 BTU X 1 kWh/3413 BTU	= 1,342,651.28 kWh					
	Unit Cost of Electricity: \$0.09/kWh							
	/	Annual Existing Cost: \$0.09 kWh X 1	,342,651.28 kWh =					
		Total Cost = \$120,83	<mark>8.61</mark>					

[Calculations continued on next page]

Final Thesis Report

Sand	Ira DiRupo	Construction Management	Dr. Horman	Apr. 9, 2008				
Mech	Mechanical Breadth Cost Savings from Cooling Energy Continued							
		ALTERNATIVE 2						
	[Тур	pical Calculation using Data from TR	RACE analysis, 3' Sha	ades]				
	PROPOSED Net Total (BTU/h): 1,149,716							
	[1,272,908 BTU/h] X [24 h/1 day] X [30 days/month] = 827,795,520 BTU/month							
	[EXPENDED BY COOLING ENERGY, May-Sept]							
	Total Ener	rgy/year: 827,795,520 BTU/month X	5 months = 4,138,97	7,600 BTU's				
		1 kWh=3,413 BT	J					
		4,138,977,600 BTU X 1 kWh/3413 BTU	J = 1,212,709.52 kWh	1				
		Unit Cost of Electricity: \$	0.09/kWh					
		Annual Existing Cost: \$0.09 kWh X	1,212,709.52 kWh =					
		Total Cost = \$109,14	<mark>13.86</mark>					

[Calculations continued on next page]

Final Thesis Report

Sanc	Ira DiRupo	Construction Management	Dr. Horman	Apr. 9, 2008				
Mech	<i>lechanical Breadth</i> Cost Savings from Cooling Energy Continued							
		ALTERNATIVE 3						
	[Typical (Calculation using Data from TRACE	analysis, with entha	lpy wheel]				
		PROPOSED Net Total (BTU/	'h): 935,786					
	[935,786 BTU/h] X [24 h/1 day] X [30 days/month] = 637,765,920 BTU/month							
	[EXPENDED BY COOLING ENERGY, May-Sept]							
	Total Ener	rgy/year: 637,765,920 BTU/month X	5 months = 3,368,82	9600 BTU's				
		1 kWh=3,413 BT	J					
		3,368,829600 BTU X 1 kWh/3413 BT	U = 987,058.19 kWh					
		Unit Cost of Electricity: \$	0.09/kWh					
		Annual Existing Cost: \$0.09 kWh >	(987,058.19 kWh =					
		Total Cost = \$88,83	<mark>5.24</mark>					

TOTAL SAVINGS FOR 18,750 SF OF SPACE IN NEW ADDITION

ALTERNATIVE 2: \$11,694.75+511.48 = \$12,206.23

ALTERNATIVE 3: \$32,003.37+511.48 = \$32,514.85

Final Thesis Report

Sandra DiRupo	Construction Management	Dr. Horman	Apr. 9, 2008
Mechanical Breadth			

Conclusion

After thoroughly calculating the energy expended for three different alternatives, the 18,750 SF space has the potential to save a maximum of \$32,514.85 per year with the new design options mentioned!

- Alternative ways to save energy and cost of energy per year were found
- Solar heat gain energy was minimized to save on the cost of cooling each floor
- Direct and indirect distribution was determined in further detail in the following section (Lighting Breadth)
 - o Solar shading
 - o Use of light shelves

Sun Table for	Baltimor	e, MD	W 76°40″0′ , I	N 39°11″0′
Calculations fr	om http://v	www.susde	esign.com/suna	angle/
	Hour	Altitude	Azimuth	
Jan. 15th 2008	7:00	-5.17	66.77	
	8:00	5.1	57.27	
	9:00	14.26	46.55	
	10:00	21.8	34.15	
	11:00	27.1	19.93	
	12:00	29.56	4.28	
	13:00	28.81	-11.72	
	14:00	24.96	-26.81	
	15:00	18.54	-40.2	
	16:00	10.18	-51.79	
	17:00	0.46	-61.89	
Feb. 15th 2008	7:00	-0.65	73.95	
	8:00	10.21	64.1	
	9:00	20.14	52.95	
	10:00	28.57	39.81	
	11:00	34.77	24.21	
	12:00	37.87	6.44	
	13:00	37.31	-12.05	
	14:00	33.21	-29.28	
	15:00	26.25	-44.13	
	16:00	17.3	-56.62	
	17:00	7.05	-67.32	
Mar. 15th 2008	7:00	7.4	81.46	
	8:00	18.71	71.32	
	9:00	29.3	59.67	
	10:00	38.55	45.4	
	11:00	45.49	27.44	
	12:00	48.87	5.86	
	13:00	47.78	-16.71	
	14:00	42.53	-36.71	
	15:00	34.34	-52.81	
	16:00	24.36	-65.69	
	17:00	13.38	-76.5	
Apr. 15th 2008	7:00	16.61	89.46	
	8:00	28.19	79.5	
	9:00	39.35	67.81	
	10:00	49.46	52.64	
	11:00	57.31	31.48	
	12:00	60.85	3.32	

	12.00	58.56	-25.86	
	13:00			
	14:00	51.47	-48.67	
	15:00	41.74	-64.95	
	16:00	30.75	-77.24	
	17:00	19.25	-87.49	
May. 15th 2008	7:00	22.72	96.57	
	8:00	34.33	87.29	
	9:00	45.84	76.4	
	10:00	56.71	61.7	
	11:00	65.7	38.58	
	12:00	69.87	2.07	
	13:00	66.42	-35.56	
	14:00	57.75	-59.92	
	15:00	47	-75.21	
	16:00	35.54	-86.37	
	17:00	23.94	-95.76	
Jun. 15th 2008	7:00	24.37	101.05	
	8:00	35.91	92.33	
	9:00	47.51	82.35	
	10:00	58.77	68.99	
	11:00	68.68	46.94	
	12:00	74.08	6.1	
	13:00	70.61	-39.09	
	14:00	61.37	-64.78	
	15:00	50.3	-79.55	
	16:00	38.73	-90.09	
Luby 15th 2000	17:00	27.16	-99.01	
July 15th 2008	7:00	22.25	100.11	
	8:00	33.8	91.2	
	9:00	45.39	81.04	
	10:00	56.57	67.64	
	11:00	66.37	46.43	
	12:00	71.99	9.6	
	13:00	69.52	-33.05	
	14:00	60.97	-60	
	15:00	50.18	-75.89	
	16:00	38.69	-87.08	
	17:00	27.08	-96.36	
Aug. 15th 2008	7:00	18.1	93.35	
	8:00	29.7	83.69	
	9:00	41.06	72.45	
	10:00	51.6	57.79	
	11:00	60.17	36.55	
	12:00	64.48	6.22	
	13:00	62.38	-26.39	
	14:00	55.04	-50.9	
	15:00	45.02	-67.52	

	16:00	33.86	-79.72	
	17:00	22.29	-89.79	
Sept. 15th 2008	7:00	13.02	82.85	
30pt. 13th 2000	8:00	24.36	72.48	
	9:00	35	60.3	
	10:00	44.24	44.91	
	11:00	50.92	24.91	
	11:00	53.51	0.69	
	12:00	51.15	-23.65	
	14:00	44.64	-43.89	
	14:00	35.48	-43.89	
	16:00	24.88	-71.77	
	17:00	13.55		
Oct. 15th 2009			-82.19	
Oct. 15th 2008	7:00 8:00	7.28	72.42 61.88	
	9:00	27.58	49.61	
	9:00	35.39		
			34.8	
	11:00 12:00	40.48 41.95	17.1 -2.55	
	13:00	39.46	-21.87	
	14:00	33.55	-38.83	
	15:00	25.18	-52.9	
	16:00	15.23	-64.62	
New 15th 2000	17:00	4.32	-74.82	
Nov. 15th 2008	7:00	0.85	64.88	
	8:00	10.89	54.76	
	9:00	19.65	43.15	
	10:00	26.55	29.64	
	11:00	30.89	14.2	
	12:00	32.08	-2.41	
	13:00	29.92	-18.81	
	14:00	24.76	-33.72	
	15:00	17.24	-46.64	
	16:00	8.04	-57.74	
Doo 15th 2000	17:00	-2.28	-67.51	
Dec. 15th 2008	7:00	-4.11	63.06	
	8:00	5.77	53.47	
	9:00	14.42	42.57	
	10:00	21.31	30.04	
	11:00	25.85	15.85	
	12:00	27.51	0.54	
	13:00	26.06	-14.8	
	14:00	21.7	-29.09	
	15:00	14.95	-41.74	
	16:00	6.41	-52.74	
	17:00	-3.4	-62.41	

1600 SunShade®

Saving Energy, Money and Time

Elmhurst Public Library, Elmhurst, IL Architect: Lohan Associates, Chicago, IL Glazing Contractor: Arcadia Products, Northbrook, IL

The addition of sunshades to buildings has frequently caused problems for contractors, costing money and time. Kawneer's 1600 SunShade[®] is the first sunshade which integrates easily into 1600 Wall System[®]1 or 1600 Wall System[®]5. Economical, easy-to-install and incorporating a variety of design choices, 1600 SunShade[®] can be used in a number of applications, both in single-story and multi-story structures.

Aesthetics

In addition to shading interiors and conserving energy, 1600 SunShade® provides a number of texture and design elements for your building, meaning you won't have to compromise style for substance. Outriggers (brackets), for example, which complement the building shape and structure, are available in several shapes. Louvers can be air foil (wing-shaped), cylindrical, square or flat. And fascias or outermost elements can be rounded, square or air foil.

Economy

1600 SunShade[®] is pre-engineered and easily assembled using screw spine joinery, then attached to a channel that is bolted to the 1600 Wall vertical mullion. The result is a 30-inch projection from the face of the glass, providing generous shade for interiors of both small and large buildings.

The considerable savings in fabrication and attachment time

Colorado Plains Medical Center, Fort Morgan, CO Architect: Davis Partnership Architects, Denver, CO Glazing Contractor: El Paso Glass-Denver, Inc., Aurora, CO

Energy Savings

The 1600 SunShade® reduces the solar heat gain on the glazing, thus lowering cooling costs, a benefit acknowledged by the International Energy Conservation Code. The reduction is measured by the projection factor, a function of the horizontal projection and height of the window, which takes into account the shading effect, thus reducing the dependence on glass coatings alone to manage the solar heat gain.

compared with custom sunshades creates economies in budgets and construction schedules. In turn, these savings allow for the use of sunshades on even the most modest of structures.

Performance

The anchorage design is capable of handling 60 psf combined vertical load of wind and snow based on attachment points of five feet on center. For loading or attachment conditions greater than this, please consult with your Kawneer representative regarding a design solution.

LEED Credits

Credits are given for providing building occupants a connection between indoors and the outdoors through the introduction of daylight and views into occupied areas of the building. The 1600 SunShade[®] can assist in achieving maximun daylighting while minimizing direct sunlight penetration and solar heat gain.

For the Finishing Touch

Permadonic Anodized finishes are available in Class I and Class II in seven different colors.

Painted Finishes, including fluoropolymer that meet or exceed AAMA 2605, are offered in many standard choices and an unlimited number of specially-designed colors.

Solvent-free powder coatings add the "green" element with high performance, durability and scratch resistance that meet the standards of AAMA 2604.

These drawings illustrate just a few of the ways 1600 SunShade[®] outriggers, louver blades and fascias can be combined to create an almost infinite variety of design elements.

Kawneer Company, Inc. Technology Park / Atlanta 555 Guthridge Court Norcross, GA 30092 kawneer.com 770 . 449 . 5555

© Kawneer Company, Inc. 2007 LITHO IN U.S.A Form No. 07-2015

2005